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We present rigorous results on the exponential convergence to equilibrium for 
the Swendsen-Wang stochastic dynamics for the d-dimensional Ising ferro- 
magnet with external magnetic field h in the thermodynamic limit. We consider 
various situations, mainly in the tow-temperature regime, in which boundary 
conditions are homogeneous and parallel or opposite to the external field. In the 
latter case we relate directly the tunneling from the metastable phase to the 
stable one with the exponential convergence to equilibrium. 

KEY WORDS:  Monte Carlo algorithms; Ising model; approach to equi- 
librium. 

INTRODUCTION 

In this paper we study the Swendsen-Wang ~1-3) dynamics for the 
ferromagnetic Ising model and in particular its rate of convergence to equi- 
librium. The SW algorithm is reversible, i.e., it satisfies a detailed balance 
condition with respect to the Gibbs measure for the Ising model; it is used 
in Monte Carlo simulations because of its very rapid decay to equilibrium, 
this feature being particularly relevant near the critical point, where the 
critical slowing down is much less severe than, e.g., in Metropolis 
dynamics. 

The SW algorithm is based on the Fortuin-Kasteleyn (4"5l representa- 
tion of the Ising model and it has the advantage, with respect to the usual 
single-spin-flip Glauber dynamics, of updating in a very efficient way the 
configurations on large scales. 
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The algorithm works as follows: starting from a configuration a, we 
construct a new configuration a' in two steps: 

(i) First we construct the "bond configuration" {7(b)}, b =  (x, x'), 
[x-x'[ = 1, as follows: a bond (x, x') is defined to be "vacant," 
i.e., V((x, x ' ) ) =  0, if a(x)~ a(x'); if a(x)= a(x'), then the bond 
(x, x') is defined to be "occupied," ~(x, x ' ) =  1, with probability 
1 - e x p ( - f l )  and "vacant" with probability e x p ( -  fi), fl being the 
inverse temperature. 

(ii) Then, given {7(b)}, we consider the connected sets of sites C, 
called "clusters," in the graph whose edges are the occupied 
bonds b. The second step consists in updating simultaneously all 
the spins in every cluster C. The updating is such that all the 
spins in C become parallel to the external magnetic field h 
with a probability [1 + exp( - f l  [h[ [C[)] -1 independently from 
cluster to cluster (]C[ denotes the cardinality of C). 

We introduce homogeneous boundary conditions (b.c.) by imposing 
that the clusters which are connected to the boundary cannot flip and must 
preserve the same value of the spin as the boundary. A more detailed 
construction of the SW algorithm is given in Section 1. 

In the present paper we shall mainly investigate the case when h is 
arbitrarily small but nonzero and fl is consequently chosen large enough. 
The high-temperature case, which is relatively easy, also will be discussed 
for completeness. 

One would like to be able to treat also the case in which fl > rio, flo 
a sufficiently large constant and h arbitrarily small; our techniques do not 
allow us, at the moment, to solve this case. The problem of convergence to 
equilibrium for single-spin-flip Glauber dynamics has been discussed in 
great detail by Holley, (6'7) but the analogous problem for the SW dynamics 
is new. In ref. 6, Holley considers general attractive finite-range stochastic 
Ising models; he reduces the proof of the exponential convergence to equi- 
librium to the validity of some mixing condition for the invariant Gibbs 
measure. This allows one to show exponential convergence for high enough 
temperature and/or high enough magnetic field. 

The case of large fl and small h is more interesting and difficult and, 
to our knowledge, is still open both for Glauber and SW dynamics. The 
reason for these difficulties is the same for both dynamics and it is related 
to the physical features of the equilibrium state: at low temperature and 
zero magnetic field the Ising model for d ~> 2 exhibits a phase transition and 
the configurations of the system have a kind of "symmetric double-well 
structure." For small h this feature is preserved even though now one of the 
two wells becomes deeper. It follows from this picture that to describe the 
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global approach to equilibrium, uniformly in the initial configurations and 
in the boundary conditions, one needs to discuss the "tunneling" between 
the phases. It is clear that a rigorous description of this phenomenon 
entirely based on the dynamics it is of independent interest, and could be 
very useful in other fields, like simulated annealing. 

In ref. 8 for the single-spin-flip Glauber dynamics and here for the 
SW dynamics we show exponential convergence in the above situation 
(h arbitrarily small and/~ very large, depending on h), i.e., we prove 

]ktA(f(o')) - -  Ef(at)[ ~< cf ex p ( - mt )  

where E(-) denotes the expectation over the stochastic time evolution, /z A 
is the invariant Gibbs measure in A, f is a function depending on finitely 
many spins, cf is a positive constant depending only on f ,  and the positive 
constant m does not depend on the volume A. 

More specifically, in Section 2, we consider the case of boundary con- 
ditions (b.c.) parallel to h where we are allowed to assume/~ [hi very small 
but not too small (/~ >> 1, [hf ~ exp -c/?). In Section 3 we consider the case 
of b.c. opposite to the field, where we assume/~ ]h[ very large but h ,~ 1. In 
Section 4 we consider the case of small/~. 

We remark here that, contrary to finite-range Glauber dynamics, for 
the SW algorithm, boundary conditions have a priori a big influence, since 
long-range interactions can arise from the presence of large clusters. 

It turns out that when the b.c. are parallel to the magnetic field the 
structure of the configurations is that of a single well, i.e., there is only one 
"locally stable configuration" (i.e., a spin configuration that can be 
modified only with a probability going to zero as/~ tends to infinity). The 
reason is that large clusters opposite to the field are immediately flipped. 
However, when b.c. are opposite to h the double-well structure is effective; 
in fact, clusters connected to the boundary are pinned in the "wrong phase" 
and then if h is very small, there are two opposite locally stable configura- 
tions. Thus, final equilibrium can only be reached after the formation in the 
whole bulk of the "right phase." This phenomenon, which occurs via 
homogeneous nucleation, requires a much more detailed analysis and it is 
the subject of the second paper of this series. ~ After the appearance of the 
right phase the dynamics inside the bulk is practically the same as the one 
with b.c. parallel to h for time scales much larger than the typical time 
needed to reach equilibrium and we are back to the previous case. 

Our approach is based on the proof of loss of memory of the initial 
conditions (in the language of Markov chains, it is a "coupling argument"). 
Roughly speaking, we show that two different initial spin configurations 
which evolve under the same noise (i.e., the random numbers involved in 
the definition of the dynamics are, at each step, the same for the evolution 
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of both configurations) in a finite box of size L, after a time of order of 
log(L), become identical with a probability bounded below uniformly in L. 
It is easy to show that this property corresponds to the exponential con- 
vergence to the equilibrium measure. The analysis of this phenomenon has 
been initially developed by the authors in the case of other stochastic 
dynamics as diffusion processes given by small random perturbations of 
dynamical systems, (1~ by means of a multiscale analysis of the time 
evolution of the process. Here the loss of memory is studied in terms of 
the Hamming distance (see Section 2) between two different initial data 
evolving under the same stochastic noise. The mechanism which is 
responsible for the loss of memory in the case of homogeneous boundary 
conditions parallel to the magnetic field h and large fl is local in the 
following sense: in a short time scale both configurations will typically 
consist of a huge cluster of spins parallel to h attached to the boundary of 
the finite box and of small islands of opposite spins. These islands will 
rapidly flip in the direction of the external field and therefore they will 
become part of the huge cluster. Of course, due to thermal noise, other new 
islands will appear in the bulk of the sea of spins attached to the boundary. 
Since both configurations will have a very large portion of the cluster of the 
boundary in common, the newly formed islands will be identical for both, 
thus producing the loss of memory�9 In order to make the above picture 
rigorous, we need the external positive field h. However, contrary to single- 
spin-flip dynamics like the Metropolis or heath bath algorithms, we believe 
that the result should hold also without the external field (but keeping the 
homogeneous, e.g., + ,  boundary conditions). The reason is the following: 
for single-spin-flip dynamics there is a convincing argument by Huse and 
Fisher (15~ (see also Sokal and Thomas (~6)) predicting a nonexponential 
convergence to equilibrium, essentially based on the observation that large 
clusters of the wrong phase survive for a very long time (proportional 
to their area) under the dynamics. For  the SW dynamics, however, big 
clusters of the wrong phase, which therefore are not attached to the 
boundary, can be flipped in a single move even without the external field. 
Thus, the role of the magnetic field here seems to us more technical than 
substantial. 

Let us now sketch the idea of the proof. We adapt to our random 
dynamics an idea introduced by Von Dreyfus in his thesis (13) to analyze 
over different scales disordered systems and subsequently applied by Klein 
and Von Dreyfus to provide a simpler proof of Anderson localization for 
the Schr6dinger equation. ~14) 

We define a sequence of length and time scales A k and tk and we 
consider the probability Pk +1 of "conservation of memory" on scale k + 1: 

�9 i ~ A k +  1 ek+l =P(3x~A~+I ,k+~ (a)(x) # ~ ~(t/)(x)) 
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where 45A(a) is the evolution at time t of the initial configuration a in a 
box A. We estimate Pk+ ~ in terms of the probability Pk of the same event 
on scale k and we get 

P~+l<~akP~+b~, Vk>>.ko 

It is not difficult to see that for suitable ak and b, ,  Pk becomes exponen- 
tially small for large k provided Pk0 is sufficiently small. 

In this way we are reduced to a problem on a fixed finite scale. 
In the case of SW dynamics the finite-size condition turns out to be 

very easy to verify in the range of parameters under consideration. 

1. DEF IN IT IONS A N D  N O T A T I O N  

We start by constructing the dynamics with + boundary conditions 
and uniform magnetic field h. We first introduce the notation. 

(i) A will denote a generic finite subset of Z J, A~, x ~ Z  J, LEN,  will 
denote the cube in Z a of side L, L odd, centered at x. 

(ii) The unordered pair b in Zd: b= (x, y), I x - y l  = 1, is called a 
bond A; A* is the set of all bonds (x, y) such that either x or 
y or both belong to A. 

(iii) o-e { -  1, 1 } IA;l denotes a generic configuration of plus or minus 
spins in A~. 

(iv) <gA~ is the family of all "geometric clusters" C in A = {x; ~b e A*; 
x e b}. A geometric cluster C is a subset of Z d which is con- 
nected in the following sense: Vx, y E C then exists a chain of 
nearest neighbor sites in C connecting x to y: 

xa...xn: x l = x ,  xn=y ,  ]Xi+x-x , l=l ,  i = 1  ..... n - 1  

Now, given A, let v b be numbers in {0, 1 } associated to each bond 
b E A* and let d.c be numbers in [0, 1] associated to each geometric cluster 
C e cg A , respectively. 

Given the numbers v b and ~c, we construct out of a configuration 
a new configuration ~' as follows. From a we first generate a new con- 
figuration 7 of occupied l-7(b) = 1 ] and vacant [7(b) = 0] bonds, by setting 

1+c% 
7(/') = - - 5 - -  vb 

where ab = a~ay if b = (x, y). The configuration 7 can be identified as the 
subset of the occupied bonds in A*. Sometimes, in order to denote the con- 
figuration (and the corresponding subset of A*) 7 obtained starting from a, 
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we use the symbol 7~ (Y~ depends of course on the numbers %). We will 
say that two n.n. sites (x, x') are connected in the bond configuration 7 if 
7(x, x') = 1, i.e., the bond (x, x') is occupied in y. The maximal connected 
components C (with respect to the configuration 7) are called "y-clusters" 
or more simply clusters. They are of course in particular geometric clusters 
and may reduce to a single site. 

For a geometric cluster C which is also a y-cluster we often write 
C c 7 o .  Now, for any C c y ~  we set 

a ' ( x ) = l  VxeC ifeither ~ c < ( l + e - ~ h l c l )  ~ 

a ' ( x ) = - i  V x 6 C  if ~ c > ~ ( l + e  /~IC[)-I and 

or C n ~? A va J25 

Cr~OA = ~  
(1.1) 

where ICI = # { x ~ C }  and •A= {x~A:  [ x - y t  = 1}. 
Let us now consider two sequences of numbers, 

b e  A* C e ~ a  

that we think of as the realization of two mutually independent processes 
with values in {0, 1 } and [0, 1], respectively, each of which is a collection 
of independent identically distributed random variables (iidrv) with 
distribution: 

v b = 0 with probability e x p ( - f l )  

v b = 1 with probability 1 - e x p ( - f l )  

and uniform distribution in (0, 1) for the r 
Given co, we finally construct a random flow on { - 1 , 1 }  A, 

A,r {r (')},~N by applying at each time step t the rule (1.1) with numbers 
%(t), ~c(t). Sometimes, for notational convenience, we will write 

~~ = r (1.2) 

Remarks. (i) The boundary condition + 1 at the boundary of A is 
taken into account by the condition that any cluster C touching ~?A is set 
equal to + 1. Other boundary conditions may be considered, e.g., periodic 
or open. 

(ii) The case of a nonconstant magnetic field can also be discussed; 
in this case h ]C[ is replaced by Z x ~ c h x  in (1.1). 

(iii) Notice that if A' c A ,  then one can compare the random flows 
~bA.o~, cA',~o as follows: given a in A, one constructs ~ in A' by the rule 

~(x )=a(x )  if xeA ' \ t?A '  

~(x )=  +1 if x�9 



Swendsen-Wang Dynamics. I 123 

The evolutions ~b,A'o(o) and ~bA"~~ are constructed by means of the 
same random numbers (vb(t), ~c(t))  if b and C are in A'. However, a 
cluster C intersecting (?A' is set equal to + 1 for the dynamics ~b A''~ but 
may be - 1  for the dynamics ~b A''~. This observation will be exploited in a 
crucial way in the next section. 

The above-defined dynamics satisfies the detailed balance condition 
for the Hamiltonian defined below, which in turn shows that the only 
invariant measure for ~b A'~ is the Gibbs state on A, with + boundary 
conditions and magnetic field h, at inverse temperature ft. Let 

h 1 a ( x ) f ( x )  (1.3) = 

d i s t ( x , A  c) = 1 

where f ( x )  = it {y ~ A: [x - y [  = 1 }, and let P(a ~ a') - erob(~b~'~(a) : a'). 
Then we have 

P(a ~ a') 
P(a '  --* a) = exp{ -- f l[HA(o ') -- HA(a)] } (1.4) 

The proof of (1.4) is given, for completeness, in the Appendix. 

Warning. Times and length scales are always integer; however, for 
simplicity we always omit the integer part symbol [.  ]. 

2. A P P R O A C H  TO E Q U I L I B R I U M  IN T H E  CASE h > O  
A N D  [3>>1 

In this section we study the rate of convergence to equilibrium for 
the dynamics discussed in Section 1 with magnetic field parallel to the 
boundary condition and fi > 1. This case is usually considered quite com- 
plicated, since the spins a,(x) are strongly correlated, contrary to the case 
fl ~ 1, where they almost behave like i.i.d, random variables. Here we do 
not need this restriction; actually, we will consider h as small as e -c~ for 
suitable c > 0, but h > 0 will be crucial. The case of magnetic field opposite 
to the boundary condition requires a detailed discussion of metastability 
and it is postponed to the next section. 

Our point of view for studying the approach to the equilibrium is to 
analyze the time behavior of the Hamming distance 

1 
p(a,, ~/,) - ~ ~ [a ,(x)  - ~/,(x)] 2 (2.1) 

x 

between two configurations at, r/, evolving with the same random flow 
ffA.o~. We will prove that if the time t is taken large enough, depending on 
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the size of the box A, then with very large probabil i ty,  P(at ,  r / t )= 0. With 
this result we will prove exponential  approach  to equilibrium. 

For  k ~ N let Lk = 10 k and tk = 2 ~ be a sequence of lengths and time 
__ 0 scales. We set Ak = AL~ and 

Pk = sup P(p(q)Ak(a), ~b~(r/)) > O) (2.2) 
a ,q~  {--  1,1 }Ak 

We will prove  the following result. 

T h e o r e m  1. There exist positive constants  ho, flo, a depending on 
d, such that  if fl > flo, h > e x p ( - h o f l ) ,  there exists m(fl, h) > 0 such that  for 

any k > aft 
Pk ~ e m,~ 

An easy consequence of the above result is the exponential  approach  
to equilibrium. Let f be a real function on { - 1, 1 } z~ of compac t  suppor t  

Sz, i.e., f (a)=-f({a(x)}x~ss) ,  with ISfl < oo, and let 

1 
#k(f)  = ~  ~ 2 f (a )  exp{ --flHA~(~)} (2.3) 

{ 1,1} Ak 

with 
Pk - #A~ 

z =  Y~ 
ere { - -  1,1}Ak 

and HAk(a) as in Section 1. 

exp{ -- flHAk(a) } 
(2.4) 

In the same hypotheses of Theorem 1, we have the following result. 

C o r o l l a r y .  There exist constants  Cf > 0 and m = m(fl)> 0 such that  

sup [#k(f)  - Ef(4Ak(a))l < Cf e x p ( - - m t )  
~y 

uniformly in k. 

As is clear from the proofs of the above results, it will be crucial to 
compare  dynamics  on different length scales and to prove that  up to a 
certain t ime scale, they are indistinguishable. This is the content  of the 
next lemma. 

L e m m a  1. Let h > 0 .  For  any k ' < k a n d  a e { - - 1 , 1 } A k ,  let ~ ,  be 
the event 

{St<~2te,, Sx~A  ~ " ~b tA~"(O-) (y)  =/: ~b,A~ (0") (y)  
Lk Lk' ~ 

for some y e A~.. with dist(y, 3A~,\OAk) >~ Lk,/2 } 
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Then, if 

we have 

Proof  o f  t e m m a  I. Given o- e { - 1, 1 }Ak, let ~ ,  be the event 

o �9 EC ~ 7~k(~) w ~ , - =  { ~s e [0, 2/k,], 3x 6 A Lk_ Lk" ' 7 0{~'(~ ) 

with diam C >  (Lk, /2)m; Cc~ A~, r ~j and ~ )  > (1 + e -*h Icl)-~ } 

(2.5) 

where diam C denotes the diameter of the cluster C: diam C=supx,  y~c 
[ x - y ] .  The probability of ~ ,  is estimated uniformly in a and k by 

P(f2~,)~<sup 2tk, sup (Lk - -Lk , )  d 
o- s 6  [0,  2tk ']  

x sup ~ e-ah Icl. P (C  c 7~s~k(o) U 7~J~(~)) 
xeAOLk_Lk, Cc~A~,#=Q~ 

d i a m  C >  ( Lk'/2 ) 1/2 

<~ 2tk,(Lk--  Lk') d sup sup 
e s E  [0 ,2 tk '~  

A x I Cl X sup ~ Y', P(C~7~k(~)WT~k'(~))e  ~h 
A 0 x x E  Lk_Lk, YGAk,  C; 

y ~ C  
d i a m  C >  (Lk,/2) 1/2 

<~ 4tk,(Lk -- Lk,) d L~, exp[ - f lh (Lk , /2 )  ~/2] (2.6) 

since 

Z 
C; 

v,~ c 
d l a m  C >  (Lk,/2) 1/2 

Next we show that 

~ ,  implies f2~, (2.7) 

Let 

~ - -  {6{~'(a)(y)= q~A~(~)(y)Vx~AOk_Lk,, Vy~A~,  

with dist(y, OA~,\C?Ak) > 2S(Lk,/2) 1/2 } (2.8) 
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We proceed by induction by proving that (~ , )c  implies -~l ca ~2 ca ... ca 
~2tk ,~ (@k,) . ~  ~ In fact, if (~?k')k ~ holds and O~s is true, then o~+~ is true. 
Suppose ~'~+1 false; then there exist a site x e A  ~ and a site x o e A  ~, Lk Lk" 
with dist(xo, OA~,\~Ak) > 2(s + 1)(L~,/2) ~/~ with 

A r 
# r Cs~ ~(~)(Xo) ~ 

e . g . ,  

~bA~,(cr)(Xo) = --1, ~bA~_,(a)(Xo) = 1 

Thus, by (1.1), x 0 belonged at time s to two different clusters C, C' with 

C c ?oJ~/ and C' c 7~{~'~) 

By ~ we have that diam C ' >  (Lk,/2) ~/2, otherwise C would have been 
equal to C'. But diam C' > (Lk,/2) 1/2 is impossible by (g2~,) ~. 

ff~k c In conclusion, ( k , )  and ~o imply ~ ca ... ca~ztk, and thus (2.7) is 
proved. By (2.6) the lemma is proved, provided k' is sufficiently large, 
that is, 

4tk,(Lk -- Lk,) a Lak, exp[-flh(Lk,/2) 1/2] <% e x p [ -  (flh/2 )(Lk,/2 ) v2] 

Proof of  Theorem I. We will establish the following recursion rela- 
tion 

L e m m a  2. The relation 

Pk +l ~< L~+I p2 + 2 e x p [ ( -  flh/2)(Lk/2) ~/2] 

holds for k large enough. 

Proof. We start from 

(2.9) 

P k  + 1  ~ 2 sup P(3x ~ A~ L~, ; OA~ ~(a)(X) VL A~k~:(Cr)(X) ) 
~y 

+ sup P(3x e Azk~ Lk'"cA;'k+l(a) # ~btk+~(q))A~ 
o-,q 

(2.10) 

By using Lemma 1 and the definition of tk, the first term in the rhs of 
(2.10) is estimated by 

2 exp{ - (flh/2)(Lk/2) ~/2 } (2.11) 

if 

4tk(Lk+ ~--Lk)dLakexp{--(flh/2)(Lk/2)l/2} ~< 1 (2.12) 
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The second term, by using the Markov property and tk+~=2tk, is 
estimated by 

L~+ 1Pk2 (2.13) 

Thus, (2.9) and the lemma are proved for k sufficiently large. 
Let ko(fl)= aft, a > 0, and let h o be smaller than �89 ln(x/i-6 ). Then, if 

h > e r and if for any d we choose fl large enough, (2.12) holds Vk >~ ko. 
Next we set f ,  = Pk l lJ~, and from (2.9) we easily get 

. ~  2 ( ' gh /4)  tk 
f k + l " < f k + e -  

Vk > k o and/3 sufficiently large. 
We know that (see Lemma 2.1 in ref. 6) 

fk ~< �89 v e -{'gh/8)%)]2k-k0 

Thus the theorem follows if we can show that 

(2.14) 

(2.15) 

2f< < 1 (2.16) 

provided rio is large enough. 
To verify (2.16), we first remark that 

P(Vs e [0, tk0] and Vbond b ~ A~*, vb(s ) = 1 ) 

>~ 1 -t~o(Lko) a e-'g > 1 --e -/3/2 (2.17) 

provided a is such that 
2 a~ 10a'gdd < e 'g/2 (2.18) 

Thus we can estimate fko as 

fko~ < llda~e fl/z+ llda# sup P(Vse [0, t~0], VbeAk*,  vb(s ) = 1 
O',r/ 

and p(~bA~o(a), ~bA~o(t/)) > 0) (2.19) 

The probability appearing in the second term in the rhs of (2.19) is in turn 
estimated by 

2 sup P(Vs e [0, t<],  Vb e Ak*, Vb(S) = 1; ~bA~o(~r)(x) = --1 for some x) 
a 

(2.20) 

In order to estimate (2.20), let us introduce the following random variable: 
n 

~,(t, x ) =  min ~ 1 - ~Ak0(~r)(xi) ~Ako(cr)(X, 1) (2.21) 
{xo, ~ ..... }i= 1 2 

x o = x  

x n ~ O A k  0 

Ix~ xz t[ = 1 

822/62/I -2-9 
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The variable ~(t, x) counts the number of Peierls contours that one has to 
cross starting from x before reaching ~3Ak0. Thus, if O(t, x ) = 0  Vx, then 
~bA~0(a)(x)= 1 Vx. Now, if for any s t  [0, tk0] and any bond b CAko, 
vb(s) > e -~, then the variable ~p(t, x) cannot increase as t varies and if ( . )  
denotes the average over the process { ~ c ( S ) } c ~ o . , ~ x  then one easily 
gets 

(O(t + 1, x ) )  ~< 3 (~(t ,  x ) )  (2.22) 

Vh > 0. By using the Chebyshev inequality, we can conclude 

P(Vs ~ [0, tk0], Vb e Ak*, vb(s) = 1; ff(tko, x) ~> 1 for some x) 

.< ra  i t3Vko (2.23) Jt~ ko L~ ko ~ "~ ) 

Using finally (2.23) as an estimate of (2.20), we get that the rhs of (2.19) 
is bounded by 

fko <~ lldaBe fl/2 ~_ llda~. 10o/~l-d+ 1](3)2 "a ~< �89 

provided fl is large enough and a is chosen so that both (2.18) and 
1 ldaae-a/2<~ e - ~ / 4  hold true. The proof of the theorem is complete. 

Proof of  the Corollary. Let t be so large that log t/log 2 > aft and 
take k, = log t/log 2 (with a as in Theorem 1). If t was taken large enough, 
then clearly 

dist(c~Ak, ' 1 S f )  ~ zL~, (2.24) 

so that, using again Lemma 1 and the definition of k,, Vk > k,, 

sup P(3x ~ Sf; (~A~,(a)(X) # (~Ak(a)(X)) <~ exp{ --(flh/2)(Lk,/2) ~/2 } (2.25) 
ff 

if 4tLak, e x p { -  (flh/2)(Lk,/2) ~/2 } ~< 1, which is certainly true for fl sufficiently 
large. Thus, 

sup I#k(f) - Ef(OA~(a))l 
o- 

= sup~ ~ e (~/2~/~(.) [ E f ( ~ ( q ) )  _ E f ( ~ ( ~ ) ) ]  

<~ 2e -(~h/2~ sup I f(cr)l + sup IE f (~ , (~ )  ) - E f ( ~ , ( ~ ) ) t  

~< (2e-~Ph/2)' + e mr) sup I f(~r)l (2.26) 
~v 

if k > k t .  
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In the first equality in (2.26) we used the invariance of the measure 
#k( ' )  with respect to the random flow ~b~(.). It  is clear that (2.26) proves 
the corollary. 

3. APPROACH TO EQUILIBRIUM IN THE CASE h<O,  
+ BOUNDARY CONDITIONS, AND ~ LARGE 

In this section we analyze the more difficult case of uniform magnetic 
field opposite to the boundary conditions. We restrict ourselves to 0 < 
th] ~ 1 but fl ]hi ~> 1 and also to d =  2, the one-dimensional case being less 
interesting. 

When the magnetic field is opposite to the boundary conditions the 
problem of the exponential approach to equilibrium, represented by the 
minus phase, cannot be attacked directly as in Section 2. The technical 
reason is that Lemma 1 fails, at least as stated. 

In fact, this is suggested by the following remark: when ~b~(~b) has 
reached the " -  phase" its dynamics in the bulk of A should be very close 
to a dynamics on a smaller box A ' c  A with - boundary conditions and 
not with + b.c. as in Lemma 1; while before reaching the " -  phase" the 
+ boundary conditions on t?A' should be more appropriate. Thus, one has 
to show that any initial configuration a after a certain typical time t(fl, h) 
reaches the - phase and then try to compare its dynamics in the bulk of 
A with the dynamics restricted to a smaller box A ' c A  with boundary 
conditions parallel to the magnetic field, for which the results of Section 2 
apply. 

In this paper we limit ourselves to the analysis of the second part  of 
the above strategy and we use, without proof, the results on the transition 
from the + phase to the - phase proved in ref. 9. Let 

t(fl, h)=exp(~hl) if d = 2  (3.1) 

Note that t(fl, h) may be written as 

t(fl, h) = exp(fi AH) (3.2) 

where AH is the difference in energy between a configuration 5: 5(x) = 1 if 
xr and 5 =  - 1  if x e A  ~ and the + configuration where lc~_2/h. The le 
critical size lc is found statically by imposing that AH attains its maximum 
as a function of l and dynamically by imposing that the droplet A ~ of - 1 lc 
in the sea of + 1 is more likely to grow than to shrink. 

In ref. 9 the following fundamental estimate has been proved. 
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T h e o r e m  2. 3 c > 0  such that given h < 0 ,  sufficiently small in 
absolute value, there exist constants /~o(h), Lo(h)  such that for any set 
A c AL with dist(A, 0Ac) > Lo(h): 

P(3a;~bAL(a)(X)=I Vx~A)<<.e  -k~) lAI  

where k(/~) /" + ~ as/~ z + ~ ,  provided 

/~ >/~o, L > Lo,  t > t(fl, h ) e c~ 

Using this result, it is simple to prove, by means of the Peierls 
argument, that for t > t(/~, h, c) = t(/~, h) e c~ and n sufficiently large, 

sup P(3s  e [t(/~, h, c), T] and a nearest neighbor self-avoiding path 
cr 

F =  {xl,..., x,} with ~As(a)(X~) = +1, i=  1 ..... n and Fc~ 0A L = x~) 

~< T(2L) e k(~),/2 (3.3) 

provided dist( { x, /2 ..... x~ }, OA) >~ Lo(h)  with 

k(/~)  .~ + ~ as  /~--, + ~  

We take n = T =  log L with log L >> e B/h. Thus, with probability larger than 
1-exp[-�89 log L]  the + cluster of the boundary does not reach the 
box A ~ with L ' =  L -  log L. 

Next we show that the dynamics inside A " -  o = A L,/2 after a time 
t(/~, h, c) is very well approximated by the dynamics ~b{"'-(-) with minus 
boundary conditions on c3A". We have 

s u p P ( 3 x e A , , ; 3 t e [ t ( ~ , h , c ) , T ] , ~ A , + ( ~ r ) ( x ) r  A", ; A,+ Cr X 

~< exp[ -- �88 log L]  (3.4) 

The proof is omitted since it is almost the same as the one given in 
Section 2. The main ingredients are: 

(i) Big clusters in 7~A,~, or in 7~A" ,~ .... which do not  touch the 
Wt ~ ) w t _ t ( [ L h ,  c } t ~ t ( ~ , h , c ) ~  I J  

boundary ~3A behave similarly, i.e., they become - 1  with high 
probability. 

(ii) Because of (3.3), there exists with large probability no effective 
cluster for the dynamics which touches OAL and c~A". These 
clusters are the only ones that may detect the difference in the 
boundary conditions in ~bA(-) and ~b~"(-). Once (3.4) has been 
established, the analog of the corollary becomes trivial. 



Swendsen-Wang Dynamics. I 131 

Proposition 1. Let f :  { -  1, 1 }A~,~__. R be of compact support. Let 
h < 0 be sufficiently small in absolute value. Then there exist constants C s, 
rio(h), in > 0 such that, Vfl > ri0(h), 

sup I,UA~(f) -- Ef (~u~(~) ) l  ~ Cfe-m(' t(fl, h,c)) 
o- 

4. APPROACH TO EQUILIBRIUM. THE HIGH-TEMPERATURE 
CASE I ]41  

We conclude this work with a short discussion of the high-temperature 
ri < 1 case. We do this just for completeness, since, as in Glauber dynamics, 
the high-temperature regime is rather simple as long as one is sufficiently 
far away from the critical point. From a qualitative point of view in 
the high-temperature regime bonds are cut I n ; = - 1 ]  with very large 
probability and therefore two arbitrary configurations ~ and t/ become 
identical in a short time. 

In order to prove the exponential approach to equilibrium, it is suf- 
ficient to prove the high-temperature analog of Theorem 1, and in turn this 
follows if: (a) one controls the range of information transmission (see, e.g., 
Lemma 1); (b)there exists a scale ko such that 

Pko "~ �89 - dko 

Condition (a) is achieved through the following lemma. 

k e m m a  3. There exists rio > 0 such that if fl < rio, there exists k(ri) 
with k(ri) ~ + oo as ri "-, 0 such that 

sup P(3s ~ [0, t];  2C ~ 7~(~1 with C ~ A,3 r ~ ,  diam C > t) ~< e-~(/~)t 

In the above estimate L is of course required to be greater than const �9 t 3. 

Proof. The probability appearing in the lemma can be estimated by 

t(t3) d sup sup P(3 a nearest neighbor path in ~A(~) xl ..... x n, n > t 
x ~ A t  3 G , s < . t  

with ] x i - x  i 11 = 1 and 7(hi)= 1 Vbi= ( x ,  X/+l) and Xl=X)  

<~t(t3) a ~ (1 - e - ~ )  " (2d)n<~e -k(~)' (4.1) 
n ~ t  

~ r r i ~ l .  
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With the help of the above lemma, one easily proves the analog of 
Lemma 1.: 

sup P(~bAk++~(~)(0) 4: qitAk+,(a)(0)) ~< e m(~,)tk (4.2) 
o" 

for a suitable constant m(//) / + oo as/~ "~ 0. 
(b) Let ko = 1. Then, clearly, 

Pko ~< 2 sup~ P(3C ~ V@oo<~ ), I CI > 1 ) ~< 4d( 1 - e ~)(20) a <~ - -  
1 

2(ll~dj (4.3) 

if f i ~ l .  
Thus, (4.2), (4.3) prove Pk<~e -m`k and exponential approach to equi- 

librium follows. 

A P P E N D I X  

In this Appendix we verify the detailed balance condition given by 
(1.4). We have 

P ( ~ r + o ' ) =  ~ P(a-*7)P(7-*o') (A.1) 

where 7 is a bond configuration and P(a---, 7 ) -  P(7,  = 7), P(7--" a') is the 
conditional probability of ~blA'~ O' given ? = 7o, and 7 ~ a means that 
if a b = - 1 ,  then b is vacant in 7; in other words, (1 + ab)/2 >~Tb. From the 
definition of the dynamics it is also clear that 

Thus, we have 

P(7 --* o") = 0 unless a' ~ 7 

P(~ + ~')  = Z P ( ~  + 7) P(~ -+ ~')  
y ~ O "  

P(~ '  --' ~  = Z P(~ '  -+ ~) P(~ -+ ~) 

Now, according to the rule (1.1), we have 

P ( a - - + ? ) = ( 1 - e  P)#{b;'b=t}(e ~)#{b;~=0ana~b=l} 

Thus 

P(a ~ 7) 

P(a'  + 7) 
e x p { - f l [ #  { b ; a ; =  - 1 } -  #{b ;  orb= - 1  

(A.2) 

3} 

(A.3) 



Swendsen-Wang Dynamics. I 133 

Similarly, 
P(7 "+ a') P(a' t C) 
P(7 ~ a) - ] ]  P(a I C) C o - / C u B A  = ~ 

with P(u ] C)= {1 + e x p [ - f l h Z ~ c a ( x ) ] }  -1. 
Since 

P(a [ C - - - - ~  =exp - - h  2 [ # ( x ) - a ( x ) ]  
x e C  

it is easy to check that (A.3), (A.4) give (1.4). 

(A.4) 
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